
CIS 4004: Web Based IT (JavaScript – Part 3) Page 1 © Dr. Mark Llewellyn

CIS 4004: Web Based Information Technology

Fall 2013

JavaScript – Part 3

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cis4004/fall2013

CIS 4004: Web Based IT (JavaScript – Part 3) Page 2 © Dr. Mark Llewellyn

• The Document Object Model (DOM) for HTML5

represents a hierarchy tree.

• At the root of every web page or document is the <html>

element, and the rest of the elements in the page are a

branch somewhere along the tree.

• JavaScript uses the DOM for addressing and manipulation a

web page beyond what you can do with HTML5 alone.

• The entire DOM tree is a representation of the document

that resides in your computer’s memory.

The Document Object Model

CIS 4004: Web Based IT (JavaScript – Part 3) Page 3 © Dr. Mark Llewellyn

• When any part of the DOM tree is addressed, it does so by

referencing an element within the tree, beginning with

document.

• Each element in the tree is addressed in order of the

hierarchy beginning with document.

• The different elements in a web page are the different

properties or methods (built-in functions) of the document

separated by a dot (.).

The Document Object Model

CIS 4004: Web Based IT (JavaScript – Part 3) Page 4 © Dr. Mark Llewellyn

• For example, document.forms.signup; would

address a form named signup within a document.

• A built-in function that does something with the document

would appear as:

document.write(“this is some text.”);

• The window root along with the document has several

built-in functions that are useful for manipulating viewing

areas of a web page (more later). See the example markup

on page 15 in the JavaScript – Part 2 notes to see a use of

the window root.

The Document Object Model

CIS 4004: Web Based IT (JavaScript – Part 3) Page 5 © Dr. Mark Llewellyn

• Current browsers provide developer tools that can display a

visual representation of a document’s DOM tree.

• The table on the next page illustrates how to access the

developer tools for desktop versions of each of the major

browsers.

• For the most part, the developer tools are very similar across

the browsers.

• NOTE: For FireFox, you must first install the DOM

Inspector add-on available at: https://addons/mozilla/org/en-

US/firefox/addon/dom-inspector-6622/.

Viewing A Document’s DOM Tree

https://addons/mozilla/org/en-US/firefox/addon/dom-inspector-6622/

CIS 4004: Web Based IT (JavaScript – Part 3) Page 6 © Dr. Mark Llewellyn

Viewing A Document’s DOM Tree

Browser Command to display developer tools

Chrome Windows/Linux: Control + Shift + i

Mac OS X: Command + Option + i

Firefox Windows/Linux: Control + Shift + i

Mac OS X: Command + Option + i

IE F12

Opera Windows/Linux/Mac OS X: From View on tool bar

select Developer Tools then select Opera

DragonFly (Control + Shift + i should also work)

Safari Windows/Linux/Mac OS X: From

Edit/Preferences/Advanced check “Show develop
menu in menu bar” – then select as needed

CIS 4004: Web Based IT (JavaScript – Part 3) Page 7 © Dr. Mark Llewellyn

• We’ ll use the markup shown on the next page as an

example to view the DOM tree in a couple of the browsers

so that you can see what the developer tool looks like.

• The tool in Chrome is shown on page 9, the tool in IE is

shown on page 10, the tool in Safari is shown on page 11,

and the tool in Opera is shown on page 12.

Viewing A Document’s DOM Tree

CIS 4004: Web Based IT (JavaScript – Part 3) Page 8 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 9 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 10 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 11 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 12 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 13 © Dr. Mark Llewellyn

• Let’s focus for a bit on the tool as it appears in the Opera

browser.

• A node in the DOM tree can be expanded and collapsed

using the ► and ▼ arrows next to a given node. The screen

shot on page 9 illustrates all nodes in the document fully

expanded.

• The html node is the root of the tree since it has no parent.

Notice in the screen shot on the next page, that if the cursor

is placed on the html node, the entire document is

highlighted in the top window.

Viewing A Document’s DOM Tree

CIS 4004: Web Based IT (JavaScript – Part 3) Page 14 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 15 © Dr. Mark Llewellyn

• When you select a node in the left side of the developer’s

tools Elements tab, the node’s details are displayed in the

right side.

• On the next page, I’ve illustrated this by selecting the <p>

element just before the start of the unordered list. In the

Properties section (right pane) you can see the values for the

<p> element.

Viewing A Document’s DOM Tree

CIS 4004: Web Based IT (JavaScript – Part 3) Page 16 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 17 © Dr. Mark Llewellyn

• In addition to viewing a document’s DOM structure, the

developer tools in each browser typically allow you to view

and modify styles, view and debug JavaScripts used in the

document, view the resources (such as images) used by the

document, and so on.

• I would suggest that you become familiar with the

developer tool in whichever browser you intend to use as

your primary development environment.

Viewing A Document’s DOM Tree

CIS 4004: Web Based IT (JavaScript – Part 3) Page 18 © Dr. Mark Llewellyn

• To get a better sense of how the DOM works with your web

page and JavaScript, it helps to see what can be done with a

web page’s windows – the viewing part of your web page.

• The following example shows how to load a new window

from the current document, leaving the current page in

place.

The Document Object Model

CIS 4004: Web Based IT (JavaScript – Part 3) Page 19 © Dr. Mark Llewellyn

PageOpener.html

CIS 4004: Web Based IT (JavaScript – Part 3) Page 20 © Dr. Mark Llewellyn

OtherWindow.html

CIS 4004: Web Based IT (JavaScript – Part 3) Page 21 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 22 © Dr. Mark Llewellyn

• Up to this point when we’ve written markup where one

page is linked to another page, the current page has

disappeared as soon as the user clicks the link to the other

page.

• Now, using this little bit of JavaScript you can “talk”
directly to the page and tell it you want a new window of a

specified size to open while the current window stays open.

The Document Object Model

CIS 4004: Web Based IT (JavaScript – Part 3) Page 23 © Dr. Mark Llewellyn

• In order to give you an even better idea of how to work with

the DOM in HTML5, certain new elements require DOM

references within the tags themselves.

• One such new element is the <output> element.

Currently, Opera is the only browser that has fully

implemented this element, so again, you should test the

following markup using Opera.

• When you use the <output> element, you can place the

results of a calculation directly on the webpage. You don’t

have to build a JavaScript function or even a simple script.

HTML5 Elements And The DOM

CIS 4004: Web Based IT (JavaScript – Part 3) Page 24 © Dr. Mark Llewellyn

• However, the materials within an output element must

follow the same DOM rules as with JavaScript.

• The output container doesn’t require content between the

opening and closing tags. However, all of the calculations

must be within the <output> element itself.

• The <output> element works in conjunction with the

<form> element and we’ve already covered that and your

current project deals with that as well.

• Now we want to focus on the DOM structure in the

<output> element ’ s use. Consider the following

markup.

HTML5 Elements And The DOM

CIS 4004: Web Based IT (JavaScript – Part 3) Page 25 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 26 © Dr. Mark Llewellyn

This output is

produced via the
onforminput event

handler.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 27 © Dr. Mark Llewellyn

• Within the form container, two input elements are named

cost and tax. In the context of the DOM, each is an object

with certain properties, one of which is valueAsNumber.

This is illustrated by the screen shot on the next page.

• Whatever number character is in the input form is treated as

an actual number instead of a text character. The

valueAsNumber is a property of the <input> element

and not the number type that was used in the element. (I

could have used a text value for the input type and had the

same results using the input element.) Recall that the

number type simply provides the selection list (see Inside

HTML5 – Part 4 – Forms, pages 56-58 for more details.)

Analysis Of The Previous Example

CIS 4004: Web Based IT (JavaScript – Part 3) Page 28 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 29 © Dr. Mark Llewellyn

• The number type simply provides the “spinner” input control

(the up/down arrows) window, but values in the input window

are not automatically converted into numeric data.

• Notice how the onforminput event handler works. As

information is entered into the form, the results are calculated

and displayed.

• After the user has entered the cost, but before they have

entered the tax, the result will be displayed as NaN (Not a

Number) because the tax value is null, resulting in a non-

numeric result. However, as soon as the tax is entered, the

output changes to a number. See the next two screen shots.

Analysis Of The Previous Example

CIS 4004: Web Based IT (JavaScript – Part 3) Page 30 © Dr. Mark Llewellyn

The user has only entered the cost

amount. At this point the tax value is

null so the total is not a numeric
value and NaN is written as the total.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 31 © Dr. Mark Llewellyn

The user has now entered both

numbers into the form and the total

is correctly calculated and displayed.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 32 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 33 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 34 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 35 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 36 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 37 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 38 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 39 © Dr. Mark Llewellyn

• The DOM enables you to programmatically access a

document’s elements, allowing you to modify its contents

dynamically using JavaScript.

• The HTML5/CSS/JavaScript example we’ll use is available

on the course website, I did not include the markup in these

notes. The example will allow you to traverse the DOM tree,

modify nodes and create or delete content dynamically.

• The CSS class highlighted is applied dynamically to

elements in the document as they are selected, added, or

deleted using the form at the bottom of the document.

• As you play around with this example, be sure to do it in the

developer tool so that you can see the DOM tree as well.

Traversing And Modifying A DOM Tree

CIS 4004: Web Based IT (JavaScript – Part 3) Page 40 © Dr. Mark Llewellyn

• The HTML5 document is manipulated dynamically by

modifying its DOM tree.

• Each element has an id attribute, which is also displayed in

square brackets at the beginning of the element (so you can

see which element is which).

• The click event listeners are registered in the JavaScript

(available on the course website) for the six buttons that call

corresponding functions to perform the actions described by

the button’s values.

Traversing And Modifying A DOM Tree

CIS 4004: Web Based IT (JavaScript – Part 3) Page 41 © Dr. Mark Llewellyn

• The JavaScript begins by declaring two variables.

• Variable currentNode keeps track of the currently

highlighted node (the initially highlighted node is the

[bigheading], the functionality of each button depends

on which node in the document (DOM tree) is currently

selected.

• The function start registers the event handlers for the

buttons, then initializes the currentNode to the <h1>

element, the element with id = bigheading.

• Note that the function start is called when the window’s

load event occurs.

Traversing And Modifying A DOM Tree

CIS 4004: Web Based IT (JavaScript – Part 3) Page 42 © Dr. Mark Llewellyn

• The JavaScript variable idcount is used to assign a unique id

to any new elements that are dynamically created by the user.

• The remainder of the JavaScript contains the event handling

functions for the buttons and two helper functions (switchTo

and createNewNode) that are called by the event handlers.

• Over the next few pages, I’ll explain how each of the buttons

and its corresponding event handler works. Before reading on,

you should download the markup, the style sheet, and the

JavaScript files and play around with the page a bit to get a feel

for what’s happening with the page as the user manipulates the

page.

Traversing And Modifying A DOM Tree

CIS 4004: Web Based IT (JavaScript – Part 3) Page 43 © Dr. Mark Llewellyn

• The first row of the form allows the user to enter the id of an

element into the text field and click the Get By id button to

find and highlight the element.

• The button’s click event calls function byId().

Finding and Highlighting an Element Using
getElementById, setAttribute and getAttribute

// get and highlight an element by its id attribute

function byId()

{

var id = document.getElementById("gbi").value;

var target = document.getElementById(id);

if (target)

switchTo(target);

} // end function byId

CIS 4004: Web Based IT (JavaScript – Part 3) Page 44 © Dr. Mark Llewellyn

• First, the byId()function uses getElementById to assign

the contents of the text field to the variable id.

• Next , the byID() function uses getElementById to

find the element whose id attribute matches the value of

variable id and assigns this to the variable target.

• If an element is found with the specified id, and object is

returned; otherwise, null is returned.

• Next, the function checks to see whether target is an object

(any object used as a boolean expression is true, while null

is false). If target evaluates to true, the switchTo()

helper function is called with target as its argument.

Finding and Highlighting an Element Using
getElementById, setAttribute and getAttribute

CIS 4004: Web Based IT (JavaScript – Part 3) Page 45 © Dr. Mark Llewellyn

• The switchTo() helper function is used a lot in this

JavaScript to highlight an element in the page. The current

element is given a yellow background (via the CSS class

highlighted).

• The DOM element methods setAttribute and

getAttribute allow you to modify and get an attribute’s

value, respectively.

• The function switchTo function uses the setAttribute

method to set the current node’s class attribute to the empty
string. This clears the class attribute to remove the

highlighted class from the currentNode before the new

node is highlighted.

Finding and Highlighting an Element Using
getElementById, setAttribute and getAttribute

CIS 4004: Web Based IT (JavaScript – Part 3) Page 46 © Dr. Mark Llewellyn

• The last thing the byID function does is uses the

getAttribute method to get the currentNode’s id

and assign it to the input field’s value property.

• This isn’t necessary when this helper function is called by

byID, but as you’ll see later, other functions call switchTo

as well. In these cases, this line ensures that the text field’s

value contains the currently selected node’s id.

• Notice that setAttribute was not used to change the

value of the input field. Methods setAttribute and

getAttribute do not work for user-modifiable content,

such as the value displayed in an input field.

Finding and Highlighting an Element Using
getElementById, setAttribute and getAttribute

CIS 4004: Web Based IT (JavaScript – Part 3) Page 47 © Dr. Mark Llewellyn

Initial Page

CIS 4004: Web Based IT (JavaScript – Part 3) Page 48 © Dr. Mark Llewellyn

Initial Page – Shown

in Opera DragonFly

CIS 4004: Web Based IT (JavaScript – Part 3) Page 49 © Dr. Mark Llewellyn

User enters “para3” in the text field for the “Get By Id” button.

When they click the button the value the user entered into the text field
is extracted and the byId() function is triggered.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 50 © Dr. Mark Llewellyn

User enters “para3” in the text field for the “Get By Id” button.

When they click the button the value the user entered into the text field
is extracted and the byId() function is triggered.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 51 © Dr. Mark Llewellyn

• The second and third rows of the form allow the user to create

a new element and insert it before or as a child of the current

node, respectively.

• If the user enters text in the second text field and clicks the

Insert Before button, the text is placed in a new

paragraph element, which is inserted into the document before

the currently selected element.

• The Insert Before button’s click event calls function

insert().

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 52 © Dr. Mark Llewellyn

• The insert() function calls the createNewNode()

function , passing it the value of the “ins” input field as an

argument.

• The helper function createNewNode() creates a paragraph

node that contains the text passed to it.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 53 © Dr. Mark Llewellyn

• Function createNewNode() creates a <p> element using

the document’s createElement method, which creates a

new DOM node, taking the tag name as an argument.

• The createElement method creates an element…it does

not insert the element on the page.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 54 © Dr. Mark Llewellyn

• To create the new element, a unique id for it is created by

concatenating the string “new” with the current value of

idcount.

• The setAttribute function is then called to set the id of the

new element.

• The value of the text is concatenated with the square brackets

used to identify the nodes to the user.

• Then the document’s createTextNode method is called to

create a node that contains only text. This new node is then used

as the argument to the appendChild method, which inserts a

child node after any existing children of the node on which it is

called.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 55 © Dr. Mark Llewellyn

• After the <p> element is created by createNewNode that

function returns the new node to the insert function, where

it’s assigned to the variable newNode.

• The newNode is then inserted before the currently selected

node.

• The parentNode property contains a node’s parent. This

property is used in the insert function to get the current node’s

parent. Then the insertBefore method is invoked on the

parent node with newNode and currentNode as its

arguments. This causes newNode to be inserted as a child of the

parent directly before currentNode.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 56 © Dr. Mark Llewellyn

• Finally, the switchTo helper function is called to set the

highlighted class on the newly created element.

• The input field and button on the third line of the input form

allows the user to append a new paragraph node as a child of the

current element.

• This is done in a similar manner to the Insert Before

button’s insert function. However, in this case the function

appendNode creates the new node and inserts it as a child of

the current node. Examine the JavaScript more closely to see

how this mirrors the insert function and also how it differs.

Creating and Inserting New Elements Using insertBefore

and appendChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 57 © Dr. Mark Llewellyn

User selects [para3] then enters new

text and clicks Insert Before button.

HTML effect shown on next page.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 58 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 59 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 60 © Dr. Mark Llewellyn

• The next two buttons on the input form provide the user with the

ability to replace the current element with a new <p> element or

simply to remove the element entirely.

• When the user clicks the Replace Current button, the

function replaceCurrent is called.

• In function replaceCurrent, the createNewNode helper

function is called in much the same manner as it was when the

InsertBefore or AppendChild buttons were clicked.

• The user’s text is retrieved from the input field in the form and

the parent of the current node is determined, then the

replaceChild method is invoked on the parent.

Replacing and Removing Elements Using replaceChild

and removeChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 61 © Dr. Mark Llewellyn

• The replaceChild method takes two arguments, the first

of which is the new node to be inserted, and the second is the

node to be replaced.

Replacing and Removing Elements Using replaceChild

and removeChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 62 © Dr. Mark Llewellyn

User selects [para1] then enters new

text and clicks Replace Current button.

HTML effect shown on next page.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 63 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 64 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 65 © Dr. Mark Llewellyn

• Clicking the Remove Current button calls the remove function in

the JavaScript which removes the currently selected element

entirely and highlights the parent.

• If the node’s parent is the body element, an error message is

displayed to indicate that a top level element cannot be deleted.

• The next page illustrates this error condition.

Replacing and Removing Elements Using replaceChild

and removeChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 66 © Dr. Mark Llewellyn

User selects [para1] then clicks

Remove Current button. JavaScript

pops up the alert that a top-level

element cannot be deleted.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 67 © Dr. Mark Llewellyn

• In general, parent.removeChild(child) looks in a

parent’s list of children for child and removes it.

Replacing and Removing Elements Using replaceChild

and removeChild

CIS 4004: Web Based IT (JavaScript – Part 3) Page 68 © Dr. Mark Llewellyn

User selects item2] then clicks Remove

Current button. HTML effect shown

on next page.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 69 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 3) Page 70 © Dr. Mark Llewellyn

• The final piece of functionality in this DOM demo is the button

that allows the user to identify the parent of the selected element.

• This is done by calling the parent function. This function

simply gets the parent node, again making sure its not the body

element since we will not allow selecting the entire body

element.

• When the parent node is determined, the switchTo function is

called to highlight the parent node.

• This sequence is illustrated by the next two slides.

Determining the Parent Element

CIS 4004: Web Based IT (JavaScript – Part 3) Page 71 © Dr. Mark Llewellyn

User selects [itme2] then clicks Get

By id. The item2 element is

highlighted. Then the user clicks the

Get Parent button. HTML effect

shown on next page.

CIS 4004: Web Based IT (JavaScript – Part 3) Page 72 © Dr. Mark Llewellyn

The parent of [item2} is now

highlighted and identified in the get By

Id text field.

